Utility of ctDNA monitoring in metastatic melanoma disease surveillance

David Polsky, MD, PhD
Professor of Dermatology and Pathology
Alfred W. Kopf MD Professor of Cutaneous Oncology
The Ronald O. Perelman Department of Dermatology
The Laura and Isaac Perlmutter Cancer Center
New York University School of Medicine
NYU Langone Medical Center
Disclosures

• Bio-Rad Corporation
 – In-kind research support

• Molecular MD, Corporation
 – Consultant
 – Licensed Intellectual Property
 – In-kind research support
Melanoma is Highly Curable when Diagnosed and Treated at Early Stages

- Primary melanoma
 - 5-year survival = 98%

- Brain Metastasis
 - 5-year survival = 15% - 30%

- Lung Metastasis

- Liver Metastasis

- Lymph Node Metastasis
 - 5-year survival = 63%

Blood-based monitoring of cell-free, circulating tumor DNA (ctDNA)
Disease Monitoring in Metastatic Melanoma

- Oncologists use frequent imaging studies to monitor disease
 - Typically CT scans as often as every 3-6 months
 - Expensive, time consuming
- No useful blood-based biomarker to monitor disease activity and guide decision-making as in other cancers
 - Prostate – Prostate Specific Antigen (PSA)
- Serum Lactate Dehydrogenase (LDH) is part of the AJCC Staging System, but has a low sensitivity and specificity to detect changes in tumor burden
- A sensitive and specific blood test for monitoring disease activity in metastatic melanoma could help clinicians detect treatment responses and failures more quickly and adjust therapies as needed
Breakthrough Discoveries and New Treatments for Metastatic Melanoma

- Mutations in a normal cellular growth pathway cause it to be stuck in the ‘on’ position

 - 5 ‘Hot Spot’ mutations in BRAF and NRAS in ~65% of melanomas
 - Drugs blocking the mutated BRAF proteins kill melanoma cells and improve survival

- Other drugs block a normal ‘off switch’ on immune cells -- tumors activate that switch to evade destruction -- blocking the switch results in immune cells destroying the cancer cells
Dramatic Clinical Responses and Relapses with BRAFV600E Inhibition

Baseline 15 weeks on Rx 23 weeks on Rx

Wagle et al. JCO 2011;29:3085-3096
Treatment failure remains common in metastatic melanoma

- Strategies to combine and/or switch treatments are under active investigation
- Recent studies suggest that patients with a lower disease burden may have improved survival outcomes
 - Normal LDH independently associated with longer median survival in BRAF or BRAF/MEK treated patients (24 months vs. 7 months, HR=0.31; p<0.001)

Advantages of Droplet Digital PCR

Digital PCR enables:
- Greater sensitivity to detect rare events
- Greater accuracy to measure quantities
- Greater precision in measurement
Cell Line Titration Series demonstrates excellent sensitivity and quantitation by ddPCR

<table>
<thead>
<tr>
<th>Stock name</th>
<th>Total DNA (ng)/rxn</th>
<th>% BRAF V600E DNA</th>
<th>BRAF V600E genomic DNA (ng)</th>
<th>BRAF V600E mutant copies EXPECTED</th>
<th>ddPCR</th>
<th>TAQMAN BRAF V600E Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAF Reference Ct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAF V600E/K Specific Ct</td>
</tr>
<tr>
<td>D4</td>
<td>300</td>
<td>0.1</td>
<td>0.3</td>
<td>100</td>
<td>96.1</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.5</td>
</tr>
<tr>
<td>E5</td>
<td>300</td>
<td>0.01</td>
<td>0.03</td>
<td>10</td>
<td>10.5</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.4</td>
</tr>
<tr>
<td>F6</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Detected</td>
</tr>
<tr>
<td>H8</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>1000</td>
<td>1065</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>I9</td>
<td>30</td>
<td>1</td>
<td>0.3</td>
<td>100</td>
<td>105</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.6</td>
</tr>
<tr>
<td>J10</td>
<td>30</td>
<td>0.1</td>
<td>0.03</td>
<td>10</td>
<td>10.6</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.8</td>
</tr>
<tr>
<td>K11</td>
<td>30</td>
<td>0.01</td>
<td>0.003</td>
<td>1</td>
<td>0.9</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Detected</td>
</tr>
<tr>
<td>L12</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Detected</td>
</tr>
<tr>
<td>N14</td>
<td>3</td>
<td>10</td>
<td>0.3</td>
<td>100</td>
<td>80</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.6</td>
</tr>
<tr>
<td>O15</td>
<td>3</td>
<td>1</td>
<td>0.03</td>
<td>10</td>
<td>7.6</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.7</td>
</tr>
<tr>
<td>P16</td>
<td>3</td>
<td>0.1</td>
<td>0.003</td>
<td>1</td>
<td>1.29</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.1</td>
</tr>
<tr>
<td>Q17</td>
<td>3</td>
<td>0.01</td>
<td>0.0003</td>
<td>0.1</td>
<td>0</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Detected</td>
</tr>
<tr>
<td>R18</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Detected</td>
</tr>
</tbody>
</table>

Presented at the 8th Circulating Nucleic Acids in Plasma and Serum conference, Baltimore, MD; November 2013. Session 1-Cancer
Study Design

- Patients undergoing treatment for metastatic melanoma
- Determine tumor mutation type (BRAF, NRAS)
- Select ‘personalized’ blood test
- Measure tumor DNA in blood
- Compare to CT scans and blood LDH

Patient Analysis Workflow

43 Patients with stage IIIc/IV metastatic melanoma tested via COBAS assay

20 Patients BRAF WT subsequently tested for NRAS Q61 mutations
11 Patients BRAF WT, NRAS WT
9 Patients had NRAS mutations:
4 Q61K
3 Q61R
2 Q61L

ddPCR on patient plasma samples

23 Patients COBAS mutant
1 Patient 12-210: BRAF V600D
22 Patients had BRAF mutations:
20 V600E
2 V600K

N= 31 patients; 146 plasma samples

30 samples from 9 patients with NRAS Q61 mutations
10 samples from 2 patients with BRAF V600K
106 samples from 20 patients with BRAF V600E

Circulating tumor DNA (ctDNA) is more sensitive than LDH in monitoring metastatic melanoma

ctDNA is More Sensitive Than LDH in Detecting Metastatic Disease at Initiation of Systemic Therapy

<table>
<thead>
<tr>
<th>A</th>
<th>Pre-Treatment RECIST</th>
<th>ctDNA</th>
<th>LDH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elevated Samples</td>
<td>% Elevated</td>
<td>Average copies/ml Elevated</td>
</tr>
<tr>
<td><5 (RECIST Total cm)</td>
<td>5</td>
<td>7</td>
<td>71%</td>
</tr>
<tr>
<td>5-10 (RECIST Total cm)</td>
<td>4</td>
<td>5</td>
<td>80%</td>
</tr>
<tr>
<td>>10 (RECIST Total cm)</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>15</td>
<td>80%</td>
</tr>
</tbody>
</table>

ctDNA is more sensitive than LDH in detecting disease progression
(Overall sensitivity -- ctDNA = 82% vs. LDH 40%, p<0.001)

B

<table>
<thead>
<tr>
<th>Progression Event</th>
<th>ctDNA</th>
<th>LDH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elevated Samples</td>
<td>%</td>
</tr>
<tr>
<td><5 (RECIST Total cm)</td>
<td>9</td>
<td>64%</td>
</tr>
<tr>
<td>5-10 (RECIST Total cm)</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>>10 (RECIST Total cm)</td>
<td>4</td>
<td>80%</td>
</tr>
<tr>
<td>Non-Target Lesions*</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Bone Met*</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Brain Met*</td>
<td>10</td>
<td>83%</td>
</tr>
<tr>
<td>Death or Hospice*</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>80%</td>
</tr>
</tbody>
</table>

*Progression event defined by non-RECIST criteria

ctDNA monitoring can detect non-RECIST disease progression

Decrease in ctDNA level in response to therapy may predict survival

Significant association between ctDNA ‘molecular response’ and PFS (p<0.03)
Polsky lab - unpublished
Limitations and Future studies

• Sample collection
 – Convenience samples collected at irregular intervals
 – Representative of actual clinical practice
 – Need landmark time points with radiographic measures to properly evaluate metrics of sensitivity and specificity

• Eligible patients limited to BRAF or NRAS mutant
 – New mutation markers needed for $\text{BRAF}^{\text{wild-type}}/\text{NRAS}^{\text{wild-type}}$
TERT Promoter mutations are common in BRAF wt/NRAS wt melanoma

68% of patients lacking a BRAF or NRAS mutation had 1 of 2 TERT mutations

ddPCR detection of TERT promoter mutations

A172 - Glioblastoma

C228T

12-126 – Melanoma

C250T

Corless B, Chang C, et al (manuscript in preparation)
ddPCR detection of TERT C250T mutation in metastatic melanoma plasma

Patient #2 plasma

C250T detected in 2 plasma samples

Patient #4 plasma

Corless B, Chang C, et al (manuscript in preparation)
Current Plans

• **Analytical validation:** Develop standardized operating procedures for each ddPCR mutation-specific assay and determine each assay’s performance characteristics to enable adoption in CLIA-certified laboratories

• **Clinical validation:** Determine the sensitivity and specificity of ctDNA monitoring to detect disease recurrence in patients receiving adjuvant therapy for surgically resected, regionally metastatic disease
Clinical validation research plan

• Analysis of serial plasma samples from BMS CheckMate 238 adjuvant Ipilimumab vs. Nivolumab clinical trial
 – n=918 patients with resected stages IIIB, IIIC, or IV
 – ctDNA assessments
 • BRAF, NRAS, or TERT promoter mutations based on the patients’ tumor mutational genotype determined by Molecular MD Corp. (BRAF/NARS) / Polsky lab (TERT)
Clinical validation planned data analysis

• Determine the association between elevated ctDNA levels and the presence of melanoma relapse
• Assess the relationship between elevated ctDNA levels and relapse-free survival
• Define the sensitivity and specificity of the ctDNA assays with respect to the presence of melanoma relapse
• Develop a predictive model of relapse-free survival that incorporates ctDNA and other clinic-pathologic characteristics

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Assessment</th>
<th>Follow Up Visit</th>
<th>ctDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ctDNA, radiographic scan</td>
<td>- - + +</td>
<td>TP</td>
</tr>
<tr>
<td>2</td>
<td>ctDNA, radiographic scan</td>
<td>- - + +</td>
<td>TP</td>
</tr>
<tr>
<td>3</td>
<td>ctDNA, radiographic scan</td>
<td>- + + +</td>
<td>TP</td>
</tr>
<tr>
<td>4</td>
<td>ctDNA, radiographic scan</td>
<td>- + + +</td>
<td>FP</td>
</tr>
<tr>
<td>5</td>
<td>ctDNA, radiographic scan</td>
<td>- - - -</td>
<td>TN</td>
</tr>
<tr>
<td>6</td>
<td>ctDNA, radiographic scan</td>
<td>- - - +</td>
<td>FN</td>
</tr>
</tbody>
</table>
Conclusions

• Serial monitoring of BRAF and NRAS ctDNA is superior to LDH in monitoring disease activity in metastatic melanoma

• ctDNA shows promise as a biomarker of metastatic disease activity in patients treated with systemic therapy

• ctDNA monitoring may help oncologists switch treatments when patient disease burden is lower than when it is detected radiographically

• Additional analytical and clinical validation studies are underway to help bring these assays to the clinic in the next 2-5 years
Acknowledgements

Polsky Research Group
- Gregory Chang
- Jyothi Tadepalli
- Brodie Corless

Biostatistics
- Yongzhao Shao
- Yilong Zhang

NYU Interdisciplinary Melanoma Cooperative Group
- Iman Osman
 - Nathaniel Fleming
 - Kevin Lui
 - Eric Robinson
 - Sarah Weiss
 - Anna Pavlick (Medical Oncology)
 - Melissa Wilson (Medical Oncology)
 - Jeff Weber (Medical Oncology)
 - Russell Berman (Surgical Oncology)
 - Richard Shapiro (Surgical Oncology)
 - Jennifer Stein (Dermatology)
 - Shane Meehan (Dermatopathology)
 - Farbod Darvishian (Pathology)

Bio-Rad Laboratories - Digital Biology Center
- George Karlin-Neumann
- Dawne Shelton
- Paula Stonemetz
- Manohar Furtado

Molecular MD Corp
- Cindy Spittle
- Shria Hafner

Support

USA Taxpayers
- U.S. Food & Drug Administration
- NIH/NCI
- NYU Cancer Institute Support Grant

- The Ronald O. Perelman Dept. of Dermatology
- Marc Jacobs Campaign to support Melanoma Research
- Sergei Zlinkoff Foundation
- Live 4 Life Foundation
- Diamondston Foundation
- Grateful Patients