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Changing Landscape of Drug Development

Increased Understanding of Cancer Biology Advent of Targeted Therapies
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High Attrition Rates/High Costs Personalized Medicine
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Molecular Characterization for Patient Selection

Declining costs of sequencing: massively parallel
next-generation sequencing and subsequent
computational analysis
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COSMIC: Catalog of Somatic Mutations in Cancer

= COSMIC launched in 2004, detailed 4 cancer genes

= 2014: world's largest and most comprehensive resource

=2, 002, 811 coding point mutations in over one million
tumor samples

*6 million noncoding mutations,
10, 534 gene fusions,
61 299 genome rearrangements
695, 504 abnormal copy number

segments and
60,119,787 abnormal

expression variants
Forbes SA, et al. Nucl. Acids Res. 2015; 43 (D1): D805



Transition From Histology
- Genomic Driver Mutations
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ALK inhibition in EML4-ALK + NSCLC Vemurafenib in BRAF V600E mutant melanoma
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Tumor Profiling

= EXxciting, dramatic responses, accelerated drug approvals

Phase | for Crizotinib —standard dose escalation in solid tumors, 2 pts
responded-> profiling showed ALK rearrangement->protocol amended
to include an expansion cohort->1500 patients screened from 2008-
2010 to enroll 82 patients with FISH+ ALK rearrangement->57%
objective confirmed partial/complete response. 2011-Crizotinib
approved by the FDA

» Challenges:

Responses may be short-lived (e.g.vemurafenib)-development of
resistance

Tumor heterogeneity
Defining a genetic aberration as ‘actionable’
Finding enough patients



Tumor heterogeneity

=Difference within regions of a given tumor and between primary and
metastases

=Only 34% of all mutations detected by multiregion sequencing in the
nephrectomy specimen were present in all regions

»So far, clinical decisions are based on data generated from one or 2 core
biopsy specimens from any one lesion

=‘Ongoing regional clonal evolution’

*Prognostic gene expression signatures shown to classify into good or bad
prognostic categories for RCC varied by region

Gerlinger M, et al. N Eng J Med 2012; 366(10): 883

Is the sample representative of the disease being treated?
Archival vs fresh tissue?



How many biopsies need to be analyzed

z | - Sy e
2 = — = 2 * = 3 — s
: === : _— f. =
£ /1/|-’! g i- == i =
=] ST = - e g .
$~1 = £ = -
— £ =
g $ . .

EvVoos Evoos Evooa?

5 - e = o - - it
e P === S R e e —

H = Ef—— s 2 ===k =1 —
z 3 ,-:'/,I/ﬁ = - £ e g a1
g — = - : : - s e
H H £ ==
- s x5 "
< I ’g ‘
¥ £ -

ARMMeOoo2 RM00s RARMMHoos

- ®

= E e | - = . S 3 —r
3. —— — £ e 3 - : i/|~'|”'
= i — : = '
- S 5 : z s
3. £ — By
g. 3 £ .
B B
: . i

RS

] == Sunutateda
i = -
= I |'/I/"| < —StDers
—H=F :
g l/i/" Pt
g = > Bon SN
£l 21
i |

e

The number of mutations that would have been detected from each tumor by
sampling one to n biopsies (where n was the number of biopsies sampled
from that tumor)

Gerlinger M, et al. Nat Gen 2014
Cell-free circulating tumor DNA (ctDNA)?



Circulating DNA
Can arise from various cell populations, could be nuclear or mitochondrial

Exist in number of structural forms: particulate structures (exosomes,
microparticles, apoptotic bodies) or macromolecular structures (nucleosomes,
virtosomes/proteolipidnucleic acid complexes, DNA traps, links with serum
proteins or to cell-free membrane parts

immune Cancer-associated
infiltrate fibroblast

Healthy non
tumoral cells

Lymphatic vessel

Blood vessel

Primary tumor:

Processes: Apoptosis, Necrosis, Active release, Phagocytosis, Cell detachment

Blood stream:

3 cfDNAorigins:

Thierry AR, et al. Cancer Metastasis Rev 2016



Timeline for important discoveries about circulating DNA

CirDNA analysis applications

1948: Cell-free DNA molecules in the human

blood compartment (Mandel et Metais) 2013: cirDNA analysis to

follow-up cancer
(Dawson et al)

1999: cirRNA analysis

(Kopreski et al) 2008: Study of the tumor
dynamics by cirDNA analysis
(Diehl et al)

1977: Higher concentration of
cirDNA in the blood of cancer
atients (Leon et al)

2010: cirDNA deriving from the
tumor is highly fragmented

2001: Circulating

i ives f
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P (Holdenrieder et al) 2011: CirDNA
(Stroun and Anker) aneuploidy test
1994:{“5 mut.atlons for prenatal 2012 : Tracking tumor
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analysis (Anker et al) y e 8 ’ Iysi rdelli et al 2014: First clinical
2005: First clinical [\ commercially analysis (Bardelli et al, validation of
study on the available (Lo) Diaz et al) cirDNA analysis
1997: Foetal DNA detection of point (Thierry et al)
circulates in the mutations by
blood of pregnant cirDNA analysis

women (Lo et al) (Diehl et al)
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1963-1970: Active damage into recipient
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messenger in humoral immune 2004: Identification of NETs
(Stroun, Anker and response (Anker et al) (Brinkmann et al)
Gahan)

Thierry AR, et al. Cancer Metastasis Rev 2016



Minimally invasive
Longitudinal sampling
Low cost

Potentially represents
multiple disease sites

Tumor biopsy

= |nvasive, associated risks
= Limited sampling

» EXpensive, resource
Intense

* Limited sample from one
site




Role of ctDNA In Cancer Management

= Known driver mutations; known aberrations in that
disease

Disease burden
As an early response marker
Monitor for recurrence

Tumor heterogeneity-does it provide a more complete picture of
the presence of various clones?

Emergence of resistant clones
Diagnostic
Presence of actionable mutations
Differentiate between benign and malignant disease

» Broad profiling to look for genetic aberrations



Assessing tumor burden, marker of response

Percentage of ctDNA to total cirDNA is a measure for tumor burden

Cancer Personalized Profiling by deep Sequencing [CAPP-Seq] in lung cancer
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Monitoring ctDNA for risk of recurrence

Hypothesis: Monitoring of tumor-specific chromosomal rearrangements in
ctDNA can detect occult metastatic disease and serve as a sensitive,
specific, and thus potentially clinically useful noninvasive biomarker in the
early stage disease setting
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Core biopsy at Mutation confirmation
diagnosis (dPCR)
H
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55 women with early stage breast cancer who received neoadjuvant chemo — definitive t/t
Mutation tracking with serial ctDNA samples was predictive of relapse (median of 7.9 mos
lead time over clinical relapse)

In the 3 pts with CNS only relapse, no ctDNA was detected before or at relapse

Garcia-Murillas |, et al. Sci Trans Med 2015, 7(302)



ctDNA: Is it better able to define tumor heterogeneity?

Analysis of tumor biopsies from patients with NSCLC progressing on
EGFR TKIs demonstrated presence of potential additional
resistance mechanisms in ~15% of cases.

In 41 pts with T790M mutation+ NSCLC progressing on EGFR TKis,
additional putative resistance mutations were detected in 46% (19
pts) in pre-treatment plasma.

14 pts had increased copy number in MET or ERBB2
3 pts had SNVs in EGFR, PIK3CA or RB1

2 had both an increased copy number in MET and SNVs in
PIK3CA or RB1

= The ability to detect additional abnormalities at baseline may impact
choice of subsequent therapy and better define innate resistance.

= Not a direct comparison of tumor biopsy vs ctDNA in the same
patient

Chabon JJ. et al. Nat Commun 2016:7:11815



Defining resistance in pts with EGFR+ NSCLC

Rociletinib selectively targets T790M containing subclones

43 pts with T790M EGFR + NSCLC-samples baseline and at progression
At progression, 28/43 pts (65%) had one or more putative resistance
mechanism

MET only
743

Number of _ Baseline Emergent
Gene - : :
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SNV: single nucleotide variants
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Chabon JJ, et al. Nat Commun 2016:7:11815



ctDNA Analysis as a Companion Diagnostic

June 2016: FDA approved cobas® EGFR Mutation Test v2 using
plasma specimens as a companion diagnostic test for the detection of
exon 19 deletions or exon 21 (L858R) substitution mutations in EGFR
gene to identify patients with metastatic NSCLC eligible for treatment
with Tarceva® (erlotinib).

Ph Il ENSURE trial: Efficacy and safety of Tarceva versus gemcitabine
plus cisplatin as first-line treatment for stage I1IB/IV NSCLC pts. T/t was
assigned based on tumor tissue results, 98.6% of pts also had plasma
samples available.

In 76.7% (70.5%, 81.9%) of tissue-positive specimens, plasma was
also positive for an EGFR mutation.

Plasma was negative for EGFR mutation in 98.2% (95.4%, 99.3%)
of tissue-negative cases.

Test approved for pts too ill or otherwise difficult to get tumor tissue

If cCtDNA result is positive then proceed with EGFR inhibitor, if negative
then obtain tumor tissue.



Good concordance
between melanoma
ctDNA and primary
tumors when samples
were collected before
treatment or less than
one year apart
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Kaisaki PJ, Cutts A, Popitsch N, Camps C, Pentony MM, et al. (2016) Targeted Next-Generation Sequencing of Plasma DNA from
Cancer Patients: Factors Influencing Consistency with Tumour DNA and Prospective Investigation of Its Utility for Diagnosis. PLoS
ONE 11(9): e0162809. doi:10.1371/journal.pone.0162809

http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0162809

@' PLOS ‘ ONE


http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0162809

Somatic variants in lung cancer tumor (diagnostic biopsy) and plasma DNA
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Definitions

* Analytical performance (analytical validity): how
accurately the test detects the analyte(s) of interest

* Clinical Validity: How well does the assay result
correlate with outcome?

* Clinical Utility: How does use of the assay improve
outcome?




