Liquid Biopsy for Diagnosis and Treatment Monitoring in Esophageal Adenocarcinoma

Tony E. Godfrey, PhD
Associate Chair-Research
Department of Surgery
Boston University School of Medicine
Why ctDNA in Esophageal Adenocarcinoma?

General Population

Patients with Reflux Symptoms

Screening Endoscopy

No BE

No Reflux Symptoms

Non-Compliance

Surveillance Endoscopy and Biopsy

80% operable
70% DF at 2 yrs

Progression to EAC

50% operable
8%DF at 2-yrs

Undiagnosed BE

Opportunity for alternative screening approach

Cancer

Opportunity for alternative screening approach
Why ctDNA in Esophageal Adenocarcinoma?

Opportunity: New tool to monitor response to therapy and/or early detection of recurrence

Only 20-40% of patients respond to chemotherapy.

20-30% 50-70%

Chemotherapy
Limited but Promising data on ctDNA in Gastroesophageal Cancer

tcDNA detected in 100% of metastatic cases (n=7)

tcDNA detected at ~10-100 copies/ml of plasma

Bettegowda et al. Sci Transl Med (2014)
Circulating Tumor DNA in EAC

Open Questions:

- How does detection rate and quantity change with tumor stage?
- Does ctDNA quantity change with response to therapy or disease progression/recurrence?

Challenges:

- Need to reliably detect mutations at ~0.05% level.
- Very little DNA in plasma/serum (10-50ng/mL = 1-10 copies of tumor DNA) and it is very fragmented.

Developed modified version of SafeSeq-S using introduction of molecular barcodes (N_{10-14}) into NGS libraries using PCR.

Kinde et al., Proc Natl Acad Sci U S A. 2011 Jun 7;108(23)
Barcoding Enables Identification of True Mutations vs Polymerase errors

Wildtype

Wildtype with PCR-induced error

True mutant with PCR-induced error
Simple, Multiplexed, PCR-based barcoding of DNA for Sensitive mutation detection using Sequencing (SiMSen-Seq)

- Target primers designed with internal hairpin.
 - Protects random barcode sequence during PCR and increases specificity

Stahlberg et al., Nucleic Acids Res. 2016 Jun 20;44(11)
Library Construction is Extremely Quick and Simple

- Two rounds of PCR
- Single purification step.
- Three hours from start to sequence-ready.

Hairpin primers open (~74°C) so adapter primers can amplify off of 1st round primers.
SiMSen-Seq Enables Flexible Multiplexing

![Graphs comparing Single-Plex and 31-Plex](image-url)
Background Consensus Error is Consistently Below 0.1%

12 replicates of 5-plex library covering 417 nucleotides

>90% of all nucleotides displayed consensus read error <0.05% and 99.3% of nucleotides showed consensus error <0.1% with 95% confidence.
Approach

1. Sequence Tumor DNA
2. Isolate Plasma DNA
3. Identify Mutations
4. Barcoded Plasma DNA Sequencing
Pitt 07: T2N0M0, Stage IB

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chr</th>
<th>Position</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Tumor allele freq</th>
<th>Mutation consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID1A</td>
<td>Chr1</td>
<td>27107152</td>
<td>G</td>
<td>T</td>
<td>0.2</td>
<td>Nonsense</td>
</tr>
</tbody>
</table>

Tumor

Plasma

0.15%
Pitt 29: T2N0M0, Stage IIB

<table>
<thead>
<tr>
<th>Gene</th>
<th>Start Position</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Tumor allele freq</th>
<th>Mutation consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53</td>
<td>Chr17 7579542</td>
<td>CGTCCGGG</td>
<td>C</td>
<td>0.45</td>
<td>Deletion</td>
</tr>
</tbody>
</table>

Tumor

![Graph showing Tumor](image1)

Plasma

![Graph showing Plasma](image2)

0.4%
Pitt 27: T3N2MX, Stage IIIB

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chr</th>
<th>Position</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Tumor allele freq</th>
<th>Mutation consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTNAP5</td>
<td>Chr2</td>
<td>125281996</td>
<td>C</td>
<td>A</td>
<td>0.16</td>
<td>Missense</td>
</tr>
</tbody>
</table>

Tumor

- **Gene:** CNTNAP5
- **Chr:** Chr2
- **Position:** 125281996
- **Allele 1:** C
- **Allele 2:** A
- **Tumor allele freq:** 0.16
- **Mutation consequence:** Missense

Plasma

- **Percentage:** 0.2%
Pitt 25: TxN2M1, Stage IV

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chr</th>
<th>Position</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Tumor allele freq</th>
<th>Mutation consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTNAP5</td>
<td>Chr2</td>
<td>125281996</td>
<td>T</td>
<td>G</td>
<td>0.31</td>
<td>Intron</td>
</tr>
</tbody>
</table>

Tumor

```
<table>
<thead>
<tr>
<th>Chromosomal Position</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12525000 - 125281996</td>
<td>0.3</td>
</tr>
</tbody>
</table>
```

Plasma

```
<table>
<thead>
<tr>
<th>Chromosomal Position</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12525000 - 125281996</td>
<td>0.012</td>
</tr>
</tbody>
</table>
```
Circulating Tumor DNA Detection Frequency Increases with Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Total Pts</th>
<th>Pts w/ tumor mutations</th>
<th>Plasma Sequenced</th>
<th>Plasma mutations detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1 (25%)</td>
</tr>
<tr>
<td>II</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td>3 (60%)</td>
</tr>
<tr>
<td>III</td>
<td>18</td>
<td>16</td>
<td>12</td>
<td>6 (50%)</td>
</tr>
<tr>
<td>IV</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>4 (80%)</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>37</td>
<td>26</td>
<td>14 (54%)</td>
</tr>
</tbody>
</table>
Mutant Allele Frequency in Plasma Increases with Tumor Stage
Improving Detection Sensitivity

• Evolution of SiMSen-Seq:
 • Shorter amplicon sizes
Amplicons <80bp Give Greater Sensitivity

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pts with tumor mutations</th>
<th>Plasma Sequenced</th>
<th>Plasma mutations detected</th>
<th>Long Amplicons Only</th>
<th>Short Amplicons Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>4</td>
<td>1 (25%)</td>
<td>0/1 (0%)</td>
<td>1/3 (33%)</td>
</tr>
<tr>
<td>II</td>
<td>11</td>
<td>5</td>
<td>3 (60%)</td>
<td>0/1 (0%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>III</td>
<td>16</td>
<td>12</td>
<td>6 (50%)</td>
<td>3/7 (43%)</td>
<td>3/5 (60%)</td>
</tr>
<tr>
<td>IV</td>
<td>5</td>
<td>5</td>
<td>4 (80%)</td>
<td>0/1 (0%)</td>
<td>4/4 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>26</td>
<td>14 (54%)</td>
<td>3/10 (30%)</td>
<td>11/16 (69%)</td>
</tr>
</tbody>
</table>
Improving Detection Sensitivity

• Evolution of SiMSen-Seq:
 • Shorter amplicon sizes
 • PAGE purified hairpin/adapter primers in first round PCR
PAGE Purified Primers give Cleaner Libraries

BRAF

NRAS

Non-PAGE

PAGE
Improving Detection Sensitivity

• Evolution of SiMSen-Seq:
 • Shorter amplicon sizes
 • PAGE purified hairpin/adapter primers in first round PCR
 • Higher on-target reads and higher consensus depth
 • True Hi-fidelity polymerase in first round PCR
 • Phusion polymerase reduces background error to <0.02%
Does ctDNA quantity change with Disease Status?

Stage IIIA patient

Point Mutations in: ARID1A, TP53
ctDNA Level Correlates with Clinical Disease Burden

Clinical course:
- Neoadjuvant chemo/radiation
- Esophagectomy
- Palliative radiation
- Progressive Disease
- Death

Tumor allele frequency in plasma:
- TP53
- ARID1A

Days after diagnosis:
0 30 60 90 120 150 180 210 240 270 300 330 360
SiMSen-Seq: Strengths and Weaknesses

• Strengths
 • Easy, fast library construction and relatively simple bioinformatics
 • Implement in individual research and clinical labs
 • Low DNA input requirement (<5ng)
 • Flexible library content
 • Most useful for 1-1000bp coverage
 • Content can be customized easily (individual patient panels, cancer-specific panels, therapeutic panels, companion diagnostics etc.)
 • Low cost for NGS approach (only sequencing regions of interest)
 • Fits perfectly between dPCR and large-scale NGS approaches.

• Weaknesses
 • Up-front assay development needed
 • Limited content relative to other NGS approaches
 • Sensitivity not quite as good as reported for some approaches
ctDNA as a Biomarker in Esophageal Adenocarcinoma

• Early Detection
 • Unclear if sensitivity will be high enough for stage I/II disease
 • But: High risk group known and current paradigm is failing

• Treatment response and recurrence monitoring
 • May have value for rapid identification of response to therapy
 • May identify pre-clinical recurrence
 • May identify residual disease following “curative” treatment

• Other
 • Prognostic biomarker in stage I/II disease
Acknowledgments

Jennifer Jackson
Virginia Litle
Anders Staahlberg
Emma Pinjic
Rhobi Marwa
Daniel Choi
Emiko Yamada
Juan Munoz

Lincoln Stein
Paul Krzyzanowski
Irina Kalatskaya

James Luketich
Arjun Pennathur
Cornelia Smith

David Zhou
Mohammed Tejani
Seher Gul