Deep Sequencing of Circulating Tumor DNA for Cancer Detection and Monitoring

Max Diehn MD, PhD
Assistant Professor of Radiation Oncology
Stanford Cancer Institute
Institute for Stem Cell Biology and Regenerative Medicine
Stanford University School of Medicine
Disclosure Information

• I have the following financial relationships to disclose:
 – Consultant for: Roche, Quanticel Pharmaceuticals, Novartis, CiberMed
 – Founder/stock holder: CiberMed
 – Grant/Research support from: Varian Medical Systems, Genzyme
Potential Clinical Applications of ctDNA

- **Screening**
 - Non-invasive Genotyping

- **Tumor Burden**
 - Local tx response
 - Minimal Residual Disease
 - Surveillance
 - Systemic tx response
 - Resistance variants

- **Time**
 - Local tx (e.g. surgery, RT)
 - Systemic tx (e.g. chemo, TKI)
Clinical Utility of ctDNA Detection

- Clinical utility of ctDNA is largely still being established
- Utility has been documented for non-invasive genotyping
 - EGFR activating mutations in NSCLC (FASTACT-2 trial - Mok et al. *CCR* 2015)
- Other potential applications are in early stages of being explored
 - Monitoring treatment resistance mechanisms
 - Minimal residual disease
NGS-based ctDNA Detection
Comparison of ctDNA Detection Limits in 10 mL Blood Draw

<table>
<thead>
<tr>
<th>ctDNA detection method</th>
<th>Detection limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger sequencing</td>
<td>>10%</td>
</tr>
<tr>
<td>Pyrosequencing</td>
<td>~10%</td>
</tr>
<tr>
<td>Whole exome sequencing</td>
<td>~5%</td>
</tr>
<tr>
<td>Whole genome sequencing</td>
<td>~1%</td>
</tr>
<tr>
<td>WholeAmplicon NGS (e.g eTAm-Seq)</td>
<td>~0.3%</td>
</tr>
<tr>
<td>Allele-specific PCR (e.g. Intplex)</td>
<td>~0.1-0.05%</td>
</tr>
<tr>
<td>Barcoded Amplicon NGS (Safe-SeqS)</td>
<td>~0.05-0.1%</td>
</tr>
<tr>
<td>Digital PCR (e.g. ddPCR, BEAMing, etc.)</td>
<td>~0.00025%</td>
</tr>
</tbody>
</table>

50% efficiency, 90% probability of detection
Tracking Multiple Mutations Increases Maximizes Sensitivity

10 cc blood → 5 cc plasma
~30 ng cfDNA
~5,000 hGEs*

*50% recovery rate assumed

M. Diehn / Stanford
Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq)

Population-level analysis

Patient-level analysis

Recurrent mutations

ACCTGTCG
ACCTGTCG
ACCTGACG
ACCTGACG

CAPP-Seq selector

Personalized biomarker for every patient
Sensitive and Specific Detection of Circulating Tumor DNA

- **Initial cohort:**
 - Pre-treatment plasma samples from patients with Stage I-IV NSCLC

- **% ctDNA:**
 - 0.019 – 3.2%

- **ctDNA concentrations:**
 - 1.9 – 226 pg/mL

Decreasing Sequencing Errors in Deep Sequencing-based cfDNA Analyses

Barcoding —
Polishing —

cfDNA (n = 12)

A>C A>G A>T C>A C>G C>T G>A G>C G>T T>A T>C T>G

Error rate

0.03%
0%

Comparison of iDES-enhanced CAPP-Seq to Digital PCR

$R = 0.93$

$P < 0.0001$
Resistance Mechanisms in EGFR Mutant NSCLC
• Activating EGFR mutations occur in 15-50% of lung adenocarcinomas
• Sensitize tumors to EGFR tyrosine kinase inhibitors
 – First line: erlotinib, gefitinib, afatinib
• Resistance invariably develops
 – EGFR T790M is most frequent mechanism (~50-60%)
• “Third generation” EGFR TKIs target both activating and T790M mutations
 – Osimertinib, rociletinib, and others
Frequency of First-line EGFR TKI Resistance Mutations in Tumor Biopsies

~5-15% of patients with more than one mechanism
Heterogeneity of Resistance Mechanisms in Response to EGFR TKIs

• Hypotheses
 – First-line EGFR TKI treatment frequently leads to intra-patient heterogeneity in resistance mechanisms
 – Patients with multiple resistance mechanisms respond less well to third generation EGFR TKIs

• Approach
 – Perform CAPP-Seq on plasma from 43 patients who progressed on first-line EGFR TKIs and were subsequently treated with rociletinib
 – Analyze baseline and emergent resistance-associated somatic alterations
ctDNA Detection Summary

Chabon et al. *Nature Communications* 2016
Intra-patient heterogeneity of resistance mechanisms to first-line EGFR TKIs

- T790M Only: 54%
- T790M + SCNA: 34%
- T790M + SNV: 7%
- T790M + SCNA + SNV: 5%

46% with > 1 resistance mechanism after 1st line EGFR TKI
Rociletinib Resistance Mechanisms

- **Putative resistance mechanism definition**
 - Absent before treatment and emerged at progression
 - Increased in relative abundance from baseline to progression

- **Putative mechanism(s) identified in 65% of patients (72% of evaluable)**

- **Significant intra- and inter-patient heterogeneity**
 - 9 genes involved
 - 21% of patients develop multiple resistance mechanisms (*)

Table

<table>
<thead>
<tr>
<th>SCNA</th>
<th>Pt ID</th>
<th>Percentage of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO4</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>CO6</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>CO7</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>CO8</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO10</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO30</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>CO36</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>CO39</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>CO45</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>CO46</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO5</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO34</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO27</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO19</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO44</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO15</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO9</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO31</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO33</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO19</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO15</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO16</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO23</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO34</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO27</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO43</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>CO46</td>
<td>2%</td>
</tr>
</tbody>
</table>

Diagram

- Genes involved: MET, ERBB2, EGFR, PIK3CA, KRAS, CDKN2A, RB1, ALK, KIT, MET
- Symbols indicate percentage of patients:
 - *: 9%
 - **: 12%
 - ***: 26%
Emergence of EGFR C797S in a Single Patient

Study	**Compound**	**Evaluable Patients**	**C797S Present Study**	**C797S Prevalence**
Present Study | Rociletinib | 40 | 1 | 2%
Piotrowska *et al.* Cancer Discovery 2015 | 9* | 0 | 2%
Novel EGFR L798I Resistance Mutation

Pre-Treatment: 10.3%
Progression: 20.4% 12.8%

T790M L798I

Day of Study
1 42 252

SLD (mm)

CO34

Mutant copies/mL

Day of Study
1 50 100 200 250 300

Ex19Del T790M L798I ND

ND
EGFR L798I Mutation Causes Rociletinib Resistance

Ba/F3 cells stably expressing EGFR constructs

Rociletinib dose [nM]

RLU mean ± SEM

- EGFR Ex19Del
- EGFR Ex19Del+T790M
- EGFR Ex19Del+T790M+L798I
MET amplification mediates innate & acquired resistance

Innate Resistance

- **Day of Study**
 - -13
 - 40
 - 64

- **Normalized Copy Number**
 - CO7
 - MET
 - SLD
 - ND

- **Mutant copies/mL**
 - EGFR Ex19Del
 - EGFR T790M
 - PIK3CA E542K
 - PIK3CA E545K
 - ND

Acquired Resistance

- **Day of Study**
 - -12
 - 77
 - 161

- **Normalized Copy Number**
 - CO10
 - MET
 - SLD
 - ND

- **Mutant copies/mL**
 - EGFR Ex19Del
 - EGFR T790M
 - EGFR S768I
 - TP53 Y205C
 - ND
Presence of Multiple Resistance Mechanisms predicts poor outcome

Expanded MET Cohort:
• 16 patients with T790M+/MET+
• 33 patients with T790M+/MET-
Summary

- ctDNA analysis has many potential clinical applications
- NGS-based methods such as CAPP-Seq can achieve similar sensitivity as ddPCR and facilitate broad molecular profiling and monitoring
- Simultaneous monitoring of multiple resistance mechanisms may allow personalized targeting of emerging resistance mutations
- Detection of MRD requires ultrasensitive assays and may allow personalized therapy
 - Randomized trial in Stage II colorectal cancer ongoing (J. Tie et al.)
- More prospective clinical studies required to validate preliminary findings and to establish clinical utility
Acknowledgements

CAPP-Seq Team

PIs: Max Diehn & Ash Alizadeh
- Aaron Newman
- Alex Lovejoy
- Dan Klass
- Henning Stehr
- Jake Chabon
- Angela Hui
- Aadel Chadhuri
- Li Zhou
- Florian Scherer
- Leslie Modlin
- Evan Osmundson
- David Kurtz
- Chih Long Liu
- Carmen Say
- Justin Carter
- Alexander Craig

Other collaborators
- Bill Loo
- David Shultz
- Michael Gensheimer
- Heather Wakelee
- Joel Neal
- Joseph Shrager
- Mark Berry
- Robert Merritt
- Robert West
- Carmen Say
- Justin Carter
- Andy Simmons
- Chris Karlovich

Funding
- NIH New Innovator Award
- NIH-NCI: R01, U01
- DOD
- Doris Duke Foundation
- V Foundation
- CRK Research Fund